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It has been a goal of researchers in the area of atomic collisions for nearly half a 
century to reduce to practical computation the simplest problem in collisional ion- 
ization: the electron-impact ionization of atomic hydrogen. The principal barrier 
to solving this problem has been the difficult boundary conditions that apply to 
the complete breakup of a system charged particles. We describe how this goal has 
been accomplished in the last five years by the application of the mathematical 
transformation of “exterior complex scaling” together with an appropriate formal- 
ism for computing the breakup amplitudes from a numerical representation of the 
complete solution of the Schrodinger equation. Some successes of other recent 
approaches to this problem are also described. 

1 Introduction 

By the end of the twentieth century essentially every feature of two-electron problems in 
quantum mechanics had for decades been reduced to  practical computation. A problem has 
been reduced to “practical computation” when a formalism and the associated numerical 
algorithms have been developed that allow the calculation, with currently available com- 
puting capability, of the relevant physical quanties to any accuracy that can be tested by 
experiment. For example, the bound states of two-electron atoms in nonrelativistic quantum 
mechanics have been such a “solved problem” since the work of Hylleraas and Pekeris ’. 
The same is true of atomic collision processes that have one electron in the continuum 
(ordinary elastic and inelastic scattering) as a result of an extended effort in the 1970s and 
1980s involving many investigators. 

However, for collision processes with two electrons in the continuum this goal was only 
reached in the last years of the century, and that effort is what this lecture is about. The 
central difficulty that impeded progress on the problem of three-body breakup in Coulomb 
systems, particularly for the collisional breakup or “e,2e” problem (as opposed to double 
photoionization), is the cumbersome asymptotic form of the scattering wave function that 
the formal theory of ionization imposes. Peterkop deduced the 
appropriate boundary conditions in the 1960s to be 

and Rudge and Seaton 

where fi is the ionization amplitude and the hyperspherical coordinates are defined by 
p = (rf + rz)1/2 with Q = tan-’(rl/rz), and tc is related to  the total energy by E = rc2/2. 
The most obvious difficulty in applying this boundary condition is that the coefficient 
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( (?I ,  i 2 ,  a) of the logarithmic phase depends on the distances and ejection angles of both 
electrons. However, the worst problem in applying Eq. (1) may be the fact that it is not 
separable in spherical coordinates, and therefore much more cumbersome to  apply to  nu- 
merical calculations which are per force done in that coordinate system. As a consequence, 
no one has yet applied Eq.( l )  to the numerical solution of the Schrodinger equation for the 
ionization problem. 

The formal theory of ionization poses another challenge to computation as well, and that 
is that the ordinary expression for evaluating the amplitude, starting from the scattering 
wave function that solves the Schrodinger equation, does not apply, because defined in the 
usual way it would have an infinite phase associated with integrating an expression with 
logarithmic phases over an infinite volume. Instead the amplitude is give by 3%4,5 

’ with effective charges in the one-body Coulomb functions, $(-k, z )  depending on both the 
energy and direction of ejection of each electron, 

. . .  

and with 

A(ki ,  k2) = 2 [ ( ~ i / k i ) E n ( h / ~ )  + (zz/k2)En(k2/~)]. (4) 

Both of these difficulties were ultimately overcome by the successful methods for treating 
the electron-impact ionization problem. The first of them, the asymptotic form in Eq.(l), 
was the central issue addressed by the Exterior Complex Scaling (ECS) method, which is 
the principal subject of this talk. The second of them, the Coulomb breakup amplitude 
formula in Eq.(2) and its attendant numerical pathologies, required a reformulation and 
the observation that numerical computations on a finite volume can be at  most beset by a 
finite overall phase that leaves observables unaffected. 

2 An Abridged History of Calculations of Differential Cross Sections for 
Electron-Impact Ionization 

It is obviously not possible to do justice to  a review of calculations, much less the theory, of 
electron-impact ionization that lead to  today’s state-of-the-art. A great deal is known about 
the fundamental theory, for example the u N El 127 threshold law and the asymptotics 
of the problem, but that rich literature is beyond the scope of this talk. Nonetheless, while 
a review of the theory of this subject is not possible here, it is useful in the context of the 
effort to reduce the (e,2e) problem to “practical computation” to  note a t  least s o m e  of the 
general categories into which computat ional  approaches to  this problem have fallen. 

Prior to  1987, all calculations of the most detailed cross sections for electron impact 
ionization, the triply differential cross section (TDCS) that is dependent on both the energy 
and the angles of the two outgoing electrons, were “perturbative” in nature. The breakup 
amplitude in these calculations takes the form (P~&.oxlVal@a), where @a is the initial 
state and Pi&ox is some approximation to  the scattering wave function. For incident 
energies above several keV the Born approximation, most notably investigated by Inokuti 
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and coworkers 7 ,  can describe the TDCS accurately. There is also an extensive literature 
on second 

-4 class of distorted wave Born approximations (DWBA) that describe the TDCS well 
at  energies of 500 eV and upward, particularly for final states in which one electron emerges 
with most of the energy, replaces one of the plane waves of the Born approximation for 
the outgoing electrons with Coulomb distorted waves. Variants of the DWBA that involve 
distorted waves for both electrons and others that include initial state interactions have 
also been investigated. Madison and coworkers lo performed early DWBA calculations, 
while other workers have investigated variants called Coulomb-projected Born l1>l2 and 
the distorted-wave impulse approximation 1 3 .  A notable success in the general class of 
perturbative approaches is an approach due to Pan and Starace 14915, called the ”distorted 
partial wave” method, which for the specific final state geometry that has the two electrons 
leaving with an angle relative to one another of Ql2 = 18O0, can give accurate results down 
to energies below 20eV. 

In 1989 a more sophisticated class of ”ansatz” wave functions was introduced into cal- 
culations of perturbative form by Brauner, Briggs and Klar l6 to explore the effect of the 
correct Coulomb asymptotic form for breakup. This was a landmark calculation that stim- 
ulated a range of other investigations focusing on the key question that still remained as 
a barrier to nonperturbative, ab initio calculations. That literature has been reviewed by 
Lucey et al. l7 and by Jones and Madison ’*, with the general conclusion that while the 
asymptotics and final state interactions may be important, including them without a better 
treatment of the interaction region does not much improve matters. 

An entirely different category of calculation seeks to  apply close-coupling techniques 
which replace the correct Coulomb three-body boundary condition with “two-body bound- 
ary conditions” appropriate for ordinary inelastic scattering of electrons from atoms. A 
new wave of such ab initio calculations was initiated by Curran and Walters ’’ in 1987 
who pioneered the application of “coupled pseudostates” to the calculation of the TDCS for 
three-body breakup. The essential idea here is t o  discretize the continuum for one electron 
as a set of square-integrable ” pseudostates”, 1 while applying ordinary, short range, scatter- 
ing boundary conditions to  the other. Total ionization cross sections had been computed 
in this way before 20,21 in early and therefore primitive calculations, but not the TDCS. 

In this approach the channels in an ordinary close-coupling expansion consist of discrete 
states of the target (say, the hydrogen atom) plus a set of discrete approximations to 
continuum states of the target (square-integrable approximations to Coulomb functions). 
The other electron is treated as the scattered electron, whose channel eigenfunctions satisfy 

f n O e Z k n T / T .  The entire wave function, P(+) is required to have the proper antisymmetry, 
although, for the necessarily finite number of pseudostates, the underlying dynamics in 
this approach treats the electrons nonequivalently. In the Curran and Walters calculations 
the breakup amplitude was then computed using an amplitude expression which ignores 
the formal considerations of Eq.(2), and is proportional to  ( e zk f  rl~cou~omb(ra)l - l / q  + 
1 / ~ 2  1 @(+I) .  These calculations gave encouraging preliminary results, but their primary 
impact was to  be in the further refinement of these ideas. 

The idea of coupled pseudostates was taken to  its logical conclusion in the pioneer- 
ing work of Bray, Stelbovics, Fursa and their collaborators in the form of the “conver- 
gent close-coupling” CCC method. By recasting the basic approach in terms of a coupled 

and higher order Born approximations ’. 

the usual boundary conditions appropriate to  non-Coulomb scattering, Fn(r) N ezko ‘S no + 
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Lippmann-Schwinger equation for the T-matrix in momentum space, and making use of 
large, orthogonal Laguerre basis sets, these workers pushed the notion of coupled pseu- 
dostates demonstrably to  convergence - a t  least for the total ionization cross section. In 
this approach one must interpret the T-matrix elements for transitions to  continuum pseu- 
dostates by providing a connection to  the correct density of states in the continuum. Thus 
both the asymptotic boundary conditions of Eq.(l) and the amplitude expression of Eq.(2) 
are ignored in the CCC approach. Nonetheless, in a landmark paper that drove a wedge 
into the formal difficulties of the (e,2e) problem, Bray and Stelbovics 22 demonstrated that 
total ionization cross sections could be computed in an ab initio calculation to  essentially 
arbitrary accuracy. The CCC method has been applied with success to  the calculation of 
the TDCS for electron-impact ionization of hydrogen 23 as well as larger atoms in approxi- 
mations with two active electrons. However the inequivalent treatment of the two electrons, 
and the fact that the formal boundary conditions for Coulomb breakup in Eq.(1) are ignored, 
lead to nonuniform convergence at  the level of the single differential cross section 24,25. 

In a related series of papers, Watanabe and coworkers 2 6 1 2 7  have applied R-matrix prop- 
agation to this problem, again applying two-body boundary conditions to  the calculation of 
the breakup cross section. They have seen the same nonuniform convergence in the SDCS 
and have not treated TDCS to  date. However, because of the efficient propagation scheme 
they employ, they have been able to  do calculations covering a large region of space and 
therefore investigate the threshold region of the ionization process. 

These questions have been the subject of a number of studies and call for approaches 
that either correctly incorporate the three-body Coulomb asymptotic boundary conditions 
or correctly avoid them within a rigorous formalism. One such approach is the “time- 
dependent close-coupling” approach of Pindzola, Schultz, Robicheaux and coworkers. In 
this approach a wave packet is fired at the target atom and the time-dependent Schrodinger 
equation describing its dynamics is solved in a close-coupling formulation 28,29.  There, is 
thus no ambiguity about the boundary conditions, since the time-dependent Schrodinger 
equation is solved as an initial value problem. There is a price to be paid however, since 
the small mass of the electron causes the wave packet to spread radically during the time 
of the collision, making the analysis of the outgoing wave function the primary challenge. 
Nonetheless, this method has been shown to produce accurate total and single differential 
cross sections 30,31. While TDCS calculations by this method are in progress and have not 
yet appeared, it is arguably the case that time-dependent methods scale better than most 
alternatives with increasing numbers of electrons, and that they may ultimately become the 
methods by which multiparticle breakup is first explored in accurate ab initio calculations. 

The first method to successfully avoid the barrier of the three-body Coulomb boundary 
conditions in a formally correct manner and also address the issue of the extraction of the 
breakup amplitude from the wave function that solves the Schrodinger equation, was the 
method of Exterior Complex Scaling (ECS). In its first application 32 to  the full problem 
of electron-impact ionization of hydrogen it was shown to  provide quantitative agreement 
with experiment for the TDCS at low energies and to provide a complete framework by 
which the (e,2e) problem is reduced to ”practical computation”. It is to  that method, the 
central subject of this talk, to  which we now turn. 

I ICPEAC.5: submitted to Rinton on August 24, 2001 4 1  



3 Exterior Complex Scaling and Reducing the e,2e Problem to Practical 
Computation 

The method of exterior complex scaling and its applications have been developed in a series 
of papers 3 3 ~ 3 4 9 3 5 1 3 2 ~ 3 6 ~ 3 7 ~ 3 8 , 3 9 , 4 0 ,  which from the outset divided the solution of the problem 
of electron-impact ionization into two discrete steps. c, 

1. 

2. 

Compute the scattering wave function without recourse to  the explicit three-body 
asymptotic form by applying exterior complex scaling to  the solution of a discretized 
representation of the Schrodinger equation. 

Extract differential and total ionization cross sections from the wave function by either 
"interrogating" it to compute the scattered flux, or using it in an integral expression 
for the breakup amplitudes. 

Computing the Scattering Wave Functaon for Collisional Breakup 

To begin the first step we must isolate the outgoing portion, P,,, of the full scattering wave 
function !I!(+), because it is to  that portion that Eq.(l) applies for breakup. 

where @O is the initial, unpreturbed state, 

ko is the incident electron momentum and 90 is the initial state of the atom. The scattered 
wave then satisfies the driven Schrodinger equation for a particular initial condition, 

( E  - H)*JEc = ( H  - E)@o. ( 7) 
The ECS method owes its origins to the long history of complex scaling methods in 

atomic and molecular physics, which in turn is based on a very simple observation about 
the behavior of solutions of the Schrodinger equation when viewed as functions of complex 
variables. A purely outgoing wave, exp(ikr), with k > 0, becomes gxponentially decaying 
when the coordinate, r ,  is scaled into the upper half complex plane, exp(ikre'Q) + 0 
as T + ca. That observation applies to the asymptotic form in Eq.(l) ,  in spite of its 
complicated logarithmic phases. Thus, complex scaling reduces the Coulomb boundary 
condition for breakup to the trivial condition that Ssc(rl, 1 2 )  vanish a t  infinity. 

The observation that complex scaling could simplify the boundary conditions for the 
case in which two electrons are in the continuum is due to Pont and Shakeshaft 41 in 
the context of double photoionization. Double photoionization is a "half collision" problem 
which admits to other simplifications as well, and there is at least one other method 42 that ,  
making use of semiclassical outgoing wave boundary conditions, avoids the complications 
of the formal asymptotic boundary conditions in that context. 

In the (e,2e) problem, however, we must extract the physics of breakup from P,, in 
a region in which the coordinates on which it depends are real, so we need to  apply the 
complex scaling transformation only when either of the coordinates of the two electrons are 
greater than some radius, Ro. The ECS transformation that does this was invented and 
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Figure 1. Left Panel: illustration of the ECS contour rotated into the upper-half of the complex 
beyond Ro. Right Panel: Depiction of exterior complex scaling for two radial coordinates. 

r-plane 

investigated in the context of electron scattering resonances with only one electron in the 
continuum 43344, and its adaptation to the (e,2e) problem shown in Fig.(l). 

(8) 

The only part of the method for solving Eq.(7) remaining to  be specified is the under- 
lying representation. For all the ECS calculations to date, *,, is first expanded in coupled 
spherical harmonics of the angular coordinates of the two electrons. The resulting coupled 
radial wave functions, !Pt,l, ( T I ,  r z ) ,  are computed on a finite difference or ‘idisCrete variable 
.representation” grid. A typical calculation might have - 450 points in each radial dimen- 
sion, and for a given total angular momentum, L,  have of the order of 24 ( 1 1 , 2 2 )  angular 
momentum pairs. The time consuming step of the calculation, now a modest computation 
on a massively parallel supercomputer, is the solution of sparse linear equations of the order 
of five million. 

One of the many radial functions contributing to 9,, that result from such a calculation 
is shown in Fig.(2). In that figure one can see the outgoing flux in the discrete, inelastic 
channels going out near the axes, while the ionization flux goes out for large r1 and 1-2 in 
the structures resembling ripples from a pebble dropped in a pond. 

3.2 

We now come to the second major step of the ECS method. With the scattering wave 
function in hand we have the problem of extracting the information it contains about 
electron-impact ionization - with no hints from its numerical representation about how to  
distinguish the parts that correspond to  Rydberg state excitation from those that correspond 
to  ionization. It would appear that one would be forced after all to  match to  Eq.(l) at the 
edges of the “box” of hyperradius Ro to extract the ionization amplitude. 

Extracting the Cross Sections and Amplitudes from the Scattering Wave Function 
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Figure 2. Real part of a representative radial function for electron-hydrogen scattering at 17.6 eV incident 
energy. Vertical axis is R e ( q )  and the two horizontal axes are ~ - 1  and 7-2 with origins at the rear left corner. 
%l“, ,12 ( T I ,  ‘2) is shown for singlet spin, L = 2 and 11 = 12 = 1 

Initially, this problem was solved in the most primitive and straightforward way possible. 
One may simply compute the quantum mechanical flux, 

F(P, Q )  = (1/2Q(@:cv@sc - Qscv@:c), (9) 
inside the region where the coordinates are complex, and by extrapolating to infinite grid 
sizes, separate the region where one electron’s coordinate is large from the ionization region 
in which both coordinates are large. The first ECS calculations on electron-impact ionization 
of hydrogen were done in this fashion. 

But ultimately it is advantageous, both computationally and theoretically, to confront 
the dilema posed by by the formal theory in Eqs.(2-4) . That was done in a study that 
first observed that the infinite phase that Eqs.(2-4) seek to avoid is simply an overall finite 
phase if the integration volume is finite. However, that is not the only pathology in those 
equations. The effective charges in the Coulomb functions that define the final state have the 
unfortunate property of destroying their orthogonality to the bound states of the hydrogen 
atom. In Eq.(2) there are terms that are proportional to  momentum conserving delta 
functions if the integration volume is infinite, and which therefore contribute nothing to the 
ionization amplitude. The second observation, on which a practical and accurate formal 
expression for the breakup amplitude can be based, is that those terms also vanish on a 
finite integration region if the effective charges are set to  unity. 

The result is an integral expression that  is appropriate to finite volumes, 

where c#J~;) is a Coulomb scattering function. It is the application of this integral formula, 
together with the ECS method, to ionization of hydrogen that has given the most accurate 
description of the complete dynamics to  date and which does in fact “reduce the problem 
to practical computation”. We now turn to  the results of these calculations. 
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The magnitudes and shapes of the singly differential cross sections at low energies give a 
particularly compelling demonstration of the ECS approach and make a satisfying connec- 
tion with the semiclassical theories that have been applied to  the threshold behavior of the 
ionization process. Fig.(3) compares the SDCS computed by the two methods described in 
Section 3.2 at incident energies from 15.4 eV (only 2 eV above the ionization threshold) to  
54.4 eV. At lower energies the flux and integral formula methods for computing the SDCS 
disagree by as much as lo%, because the extrapolation of the flux becomes increasingly 
difficult as the energy is lowered. However no such difficulty affects the integral expression 
in Eq.(lO). At very low energies the SDCS is almost flat and almost constant as a function 
of incident energy. If it were flat and constant it would correspond to a linear threshold 
law for the total cross section. In semiclassical calculations at the Wannier geometry with 
electrons exiting in opposite directions, Rost 45 predicted qualitatively the subtle departures 
from flatness as the SDCS turns from a “smile” at high energies to  a nearly flat shape at 
energies near threshold. 

The TDCS at 17.6eV incident energy is compared with the absolute experimental mea- 
surements of Roder et al. l5 in Fig.(4). The results are shown for the coplanar symmetric 
experimental geometry (which means that the incident electron and both exiting electrons 
lie in a plane, and the two exiting electrons have equal energy), with a fixed angle between 
the exiting electrons. There has been some question about about the internormalization of 
these measurements with others done holding the direction of one exiting electron fixed, but 
unpublished results in J. Roder’s thesis have recently resolved that discrepancy 46. From 
19.6 eV to 30eV only relative measurements are available, but excellent agreement with 
them is attained in ECS calculations, as is demonstrated in Fig.(5). Complete presenta- 
tions of ECS results on this system up to  August of 2001 are given elsewhere 37,40. 

Calculations on Electron-Impact Ionization of Hydrogen 

4.1 Conclusion 

The reduction of this problem to  computation means that with accurate calculations we 
can now confidently explore the dynamics at geometries that have never been measured. 
A glimpse of what is now possible is given in Fig.(6), which shows only three frames of an 
animation of the TDCS for nonequal energy sharing that demonstrates in detail how the 
angular distributions change as the fraction of the ejection energy taken by one electron 
varies from zero to one. For this simple system it will shortly become a routine matter to  
computationally explore noncoplanar geometries together with with unequal energy sharing 
only a few volts above threshold. At this stage it would be useful to  have a final, absolute, 
experimental benchmark for one or two such configurations. 

While there are aspects of the problem of the collisional breakup of a system of three 
charged particles that are not yet solved, notably the problem of positron impact ionization 
where ionization competes with positronium formation, it can truly be said that, finally, 
the simplest e,2e problem has been %educed to  practical computation”. 
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